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Classical logic and Boolean algebras are, of course, very intimately related. It is, 
however, possible to show that lattices of propositions isomorphic to the lattice 
of all the closed subspaces of a separable Hilbert space arise quite naturally within 
the classical propositional logic. This was first shown by the author in 1987 in 
connection with a certain type of theories called theories with orthocomplementa- 
tion. These theories are not easy to interpret physically and it is shown that 
simpler theories, which are more amenable to physical interpretation, can also 
be used. It is then possible to assume that quantum theory is such a theory and, 
as a result, to formulate a new approach that provides a way of looking at the 
wave-particle duality and touches upon the foundations of quantum field theory. 

1. THE P O S E T  OF A THEORY 

To begin with, let us establish some terminology. Let U be a nonempty 
set of  symbols not containing the symbols ~ ,  ~,  (,). The cardinality of U is 
strictly greater than 0, otherwise it is arbitrary. By the classicalpropositional 
calculus generated by U we mean the smallest set W such that 

1. U~W. 
2. I f A ~ W ,  then (,,~A)eW. 
3. If A, B~W, then (A ~ B ) ~ W .  

We may remove brackets where there is no danger of ambiguity. Logical 
connectives other than -~ and ~ can be defined in the usual way. For exam- 
ple, we may consider A v B as an abbreviation for ~A ~ B; A A B as an 
abbreviation for ~ ( A ~ ~ B ) ;  and A~--~B as an abbreviation for 
(A ~ B) A (B ~ A). The elements of  U may be called simple propositions and 
those of  W\ U compound propositions. A valuation of W is a function 
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t: W--* {0, 1} such that 

t(a) ~ t(~A) 

and 

t ( A ~ B ) = O  iff t ( A ) = l  and t (B)=0 

If  A e W and t is a valuation, then t(A) is the truth value of A under t. 
A function s: U ~  {0, 1} shall be called an assignment to U. It is very impor- 
tant to emphasize that any assignment to U can be extended to a unique 
valuation of  W. This assertion, which guarantees the existence of valuations, 
is an obvious consequence of the fact that the truth value of a compound 
proposition is uniquely determined by the truth values of the simple proposi- 
tions which occur in it. 

Now, A e W is a tautology iff t(A) = 1 for every valuation t. I f  K _  W 
and there exists a valuation t such that t(K) = 1, i.e., the truth value of every 
element of Kunder  t is 1, then Kis  consistent. If K _  Wand Ae Wand t(A) = 
1 whenever t(K) = 1, then we say that A is a logical consequence ofK. A set 
K _  W is a theory in W iff every logical consequence of K belongs to K. 
Theories exist because if f~ is a nonempty set of valuations, then the set 
T(f~) = {Ae W: t(A) = 1 for every tef~} is easily seen to be a theory. Further- 
more, this theory is consistent because f~ is nonempty. We may call T(fl) 
the theory of  fL 

Partially ordered sets of (classes of) propositions, which are not neces- 
sarily Boolean algebras, arise by examining the influence of theories in W 
on U, the set of all simple propositions. Let T be a theory in W. For all 
p, qeU  put p = q  iff (p*--~q)eT. Clearly, = is an equivalence relation. For 
every pe  U, let [p] be the equivalence class o f p  and let Ur be the collection 
of equivalence classes. UT is partially ordered by 

[p] < [q] iff (p ~ q) e T 

The partially ordered set (Ur, <) shall be called the poset of  T. For all 
p, qe U, the I.u.b. and g.l.b, of {[p], [q]} need not exist in Ur. If  they exist, 
then they shall respectively be denoted by [p] ~)[q] and [p] | [q]. 

It is now easy to see that (Ur, < ) is not necessarily a Boolean algebra. 
Let T, for example, be the set of all logical consequences of p, for some fixed 
pe  U. An obvious truth table argument will confirm that whereas [p] is a 
maximum element in Ur, there does not exist re U such that r --* qe T, for 
every qe U. Hence (U r, <), unlike a Boolean algebra, has no minimum. 
Other choices of  T produce other deviations from Boolean algebras. 
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2. f-VALUATIONS 

The question arises whether there is a theory T for which (Ur, <) is 
isomorphic to a given partially ordered set, e.g., the lattice of all the closed 
subspaces of a separable Hilbert space. We shall see that there is. To that 
end let (L, < )  be any atomic orthocomplemented lattice with the following 
property. 

D: For all a, b E L, b dominates a (i.e., a < b) iff every atom dominated 
by a is dominated by b. 

The lattice L(H) of all the closed subspaces of a separable Hilbert space 
H has property D and so does any atomic Boolean algebra. Let o, i be the 
null and unit elements of L. The orthogonal complement of aEL is denoted 
a • Elements a, b of L are said to be orthogonal iff a_< b • and then we write 
a_Lb. 

Next choose U so that the cardinality of U is greater than that of L. 
Thus, there is a surjection f from U onto L. Fdr every atom eeL let 
S e : U- . -~  {0, 1} be defined by 

se(p)= 1 iff e<f(p)  

As has already been emphasized, the assignment se can be extended to 
a unique valuation te of Wthat  we shall call an f-valuation. Once the function 
f h a s  been chosen, let it remain fixed. Different f-valuations, for our fixed f ,  
are obtained by choosing different atoms eeL. Let f~ be the set of all f-  
valuations and let Tbe the theory off~, i.e., T=  T(f~). (See Section 1 above.) 
Then T is consistent because f~ is nonempty. Since f is a surjection, there 
exist i, o E U such that f ( i )=  i and f (o)= o. 

Theorem 1. i t  T and HOE T. 

Proof Sincef(i)  = i, we have e <f(i)  for every atom eeL. Hence i takes 
value 1 in every f-valuation. Thus, i t  T. On the other hand, f (o)= o and for 
any atom eeL, eLf(o) .  Thus o is false in every f-valuation, i.e., (-~o) takes 
value 1 in every f-valuation. Hence (NO) E T. �9 

Theorem 2. For all p, qE U, (p ~ q)E T iff f (p)  < f(q). 

Proof First suppose t h a t f ( p ) g f ( q ) .  Then by property D, there is an 
atom eeL such t h a t f ( p )  dominates e, bu t f (q)  does not dominate e. Then, 
for the f-valuation te we have t~(p)= 1 and te(q)=0. Thus, t~(p ~ q)=0. 
Hence (p ~ q) r T. 

Conversely, suppose (p ~ q) ~ T. Then there exists an f-valuation te such 
that t~(p) = 1 and te(q)=0. Thus e<f(p) ,  but eLf(q) .  By property D, 

f(P) ~f(q).  �9 
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Corollary. (i) For all p, q~ U,f(p) <f(q) iff [p] < [q] a n d f ( p )  =f (q)  iff 
[p] = [q] and (ii) for all pc  U, [o] < [p] < [i]. 

Proof Part (i) follows directly from the definition of the partial order 
relation in Ur, the equivalence relation on U, and Theorem 2. For part (ii) 
we note that for all pE U, o <f(p) <i  or, equivalently, f (o)  <f(p) <f(i). By 
part (i), [o] < [p] < [i]. �9 

For all p, qe U we say that q is a conjugate of p i f f f (q)=(f(p))  • 
Clearly, this is a symmetric relation. For all p, qe U, if q is a conjugate of p, 
we put [q] = [p]*. That is, we define [p]* to be the equivalence class of a 
conjugate ofp. By the corollary of Theorem 2, the operation * is well defined. 

Theorem 3. The operation * is an orthocomplementation of Ur. That 
is, for all u, v~ Ur: 

(i) u**=u. 
(ii) u| and u@u* exist and respectively are [o] and [i]. 

(iii) u < v implies v* <u*. 

Proof (i) Suppose u = [p]. Then u* = [p]* = [q], where q is a conjugate 
ofp.  Thus u** = [p]** = [q]*. But since p is a conjugate of q (the relation "is 
a conjugate of" is symmetric), we have [q]*= [p]. Thus, u** = [p] = u. 

To prove (ii), again let u = [p] and q be a conjugate ofp.  Then, again, 
[q] = [p]*. Bu t f (p )  <f(i) andf (q)  <f(i). Then by the corollary of Theorem 
2, [p] < [i] and [q] = [p]*< [i]. Thus [i] is an upper bound of u and u*. If  
v = [r] is another upper bound, then, by the corollary of Theorem 2, f(r) is 
an upper bound o f f ( p )  and f(q) =f(p)•  Thus f(i) < f ( r ) ,  since f(i)  is the 
least upper bound o f f ( p )  a n d f ( p )  • Thus, by the corollary of Theorem 2, 
[i] < [r]. That is, [i] is the least upper bound of u = [p] and u* = [q]. Similarly, 
[o] is the g.l.b, of {u, u*}. 

To prove (iii), let u = [p] and v = [r] and suppose u < v. T h e n f ( p ) < f ( r )  
and we havef( r )  • <f(p)• Further suppose that q is a conjugate of p, and 
w is a conjugate of r. Then f ( r )  • =f(w)  a n d f ( p )  • =f(q) .  Thusf(w)  <f(q). 
Hence, by the corollary of Theorem 2, [w]<[q], i.e., [r]*<[p]*, i.e., 
v* _ u*. �9 

Thus, (Ur, [o], [i], _<, *) is, like L, an orthocomplemented partially 
ordered set (orthoposet for short). The next theorem shows that this ortho- 
poset is also a lattice isomorphic to L. 

Theorem 4. The orthoposets Ur and L are isomorphic. 

Proof Let h: U r ~ L  be given by h([p])=f(p). Then h is a bijection 
and, by the corollary of  Theorem 2, 

[p]_< [q] iff h([p])<_h([q]) 
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Also 

Finally, 

h([o]) = f ( o )  = o and h([i]) = f ( i )  = i 

h([p]*) = h([q]) 

where q is a conjugate of p. Thus h ( [ p ] * ) = f ( q ) = f ( p ) ' .  [] 

Theorem 4 is the central result of  this paper. It tells us that the orthopo- 
set of  T"faithfully mimics" the orthoposet L. In particular, if L is an atomic 
Boolean algebra, then so is Ur. I f L  is the lattice of all the dosed subspaces of 
a separable Hilbert space, then Ur is isomorphic to it. Thus, a nondistributive 
lattice of  propositions does not necessarily require the formulation of a new 
logic. The possibility exists that we may be able to consider the lattice of  all 
"quantum propositions" as the poset of a theory in a classical propositional 
calculus. This possibility shall be explored further in Section 6, below. In 
the meantime we must clarify the relationship between logical negation and 
orthocomplementation in Cir. 

Theorem 5. For all p, q~ U, f(p)_kf(q) implies (p --. ~q) ~ T. 

Proof Suppose that (p~q)q~T. Then there is an f-valuation te 
such that 

t e (p)  = 1 and te(q) = 1 

Thus e<f(p) and e<f(q) and e ~ o ,  because e is an atom. Hence f ( p )  is 
not orthogonal t o f (q ) .  [] 

To put it somewhat loosely, this says that two simple propositions 
represented by two orthogonal elements of  L cannot simultaneously have 
truth value 1 under T. The converse of  Theorem 5, however, is not necessarily 
correct. To see this, let L be the lattice of all the subspaces of the Euclidean 
space 9t 3. Le tp  be a simple proposition (an element of  U) such t h a t f ( p )  is 
the xy plane and let q be a simple proposition such that f(q) is the one- 
dimensional subspace generated by the vector (1, 1, 1). Then f(p) is not 
orthogonal to f(q) and yet (p---} ~q)~ T, since no atom, i.e., a one-dimen- 
sional subspace, is contained in b o t h f ( p )  andf (q )  and, consequently, there 
does not exist an f-valuation in which both p and q have truth values 1. For 
a theory with orthocomplementation both Theorem 5 and its converse are 
true (Malhas, 1987). Thus, T is not such a theory. 

l f p  and q are conjugate propositions, t h e n f ( p ) = f ( q ) •  Then not only 
are f(p) and f(q) orthogonal, which implies (p ~ ~q)~ T, but also one is 
the orthogonal complement of the other. For this particular case one may be 
tempted to anticipate that this should imply that q is equivalent under T to 



1704 Malhas  

the negation of p. More precisely, that if q & a conjugate of p, then 
(p *-~ ~-,q) e T. This, however, is not so: Let L be the lattice of all the subspaces 
of the Euclidean space 9t 3, as above and let e be the one-dimensional sub- 
space generated by the vector (1, 1, 1). Let p, qe U be such that f (p)  is the 
xy plane and f(q) is the z axis. Then q is a conjugate of p, but te(p) = te(q) = 
0, which implies te(p ~ ~q)= 0, i.e., ( p ~  ~q)~ T. More shall be said about 
the meaning of the orthocomplementation in UT in Section 4 on occupation 
sets. 

3. THE LINDENBAUM ALGEBRA OF T 

It is a great relief that orthocomplementation does not correspond to 
logical negation. Similarly, we should not, in general, expect the least upper 
and greatest lower bounds of two elements in Ur, where they exist, to 
"correspond," in any naive sense, to the logical connectives A, and v .  
The reason is simple: We must not run foul of the Kochen and Specker 
(1967) theorem, or other variations on the same theme, e.g., Zierler and 
Schlessinger (1965): We cannot embed the lattice of all the closed subspaces 
of a separable Hilbert space into any Boolean algebra. In particular, we cannot 
embed the orthocomplemented lattice UT into the "Lindenbaum algebra" 
of T. This latter structure is obtained as follows: 

Define an equivalence relation ~ on W (the set of all, simple and 
compound, propositions) by setting A ,,~ B iff (A ~ B) e T. Let Wr be the set 
of all equivalence classes. The equivalence class of A shall be denoted by 
[[A]]. Partially order Wr by setting [[A]] /_[[B]] if ( A ~ B ) e T  and set 
[[A]] + = [[~A]]. It turns out that 

(WT, L, +) 
is a Boolean algebra, wi th ,  being the operation of complementation. The 
unit element I is the equivalence class of any consequence of T, e.g., any 
tautology. The null element 0 is the equivalence class of the negation of any 
consequence of T, e.g., the negation of a tautology. By Theorem l, we have 

0 = [ [o1]  = [["~i]] 

and 

I = [ [ i ] ]  = [ [ ~ o ] ]  

An obvious truth table argument (or other elementary methods) will 
demonstrate that for all A, B, CE W, if A ~ CET and B ~  C~T, then 
(A v B) ~ C~ T. It easily follows that for all [[A]], [[B]]e Wr 

l.u.b, of {[[A]], lIB]I} =[[A v B]] 
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Similarly, 

g.l.b, of {[[A]], [[B]]} = [[A ^ B]] 

We shall call the Boolean algebra (Wr, / ,  t) the Lindenbaum algebra of T. 
From the definitions it follows that for all A e W and p e U, A e[p] 

implies A e U and A~--~peT, which implies that A e[[p]]. Thus, for every 
pe  U, [p] ___ [[p]]. Define ( :  U r ~  Wrby putting (([p]) = [[p]]. It immediately 
follows that ( is injective (but not surjective). It also follows that for all 
p, qeU, 

[p] < [q] iff (([p])/_ (([q]) 

~([i]) = I  and 5([0]) =0  

Thus, ( is an embedding of the partially ordered set ( fir, < ) into the parti- 
ally ordered set (Wr,  l_). (There is no need to suspect that something has 
gone wrong here. This embedding exists, because we have just shown that 
it does and, hence, it does not contravene any of the "no embedding" theor- 
ems. This embedding is an embedding of Ur into Wr as partially ordered 
sets and not as orthocomplemented lattices.) Without loss of rigor we may 
therefore identify the elements of Ur with elements of Wr. To be precise, 
for all pe  U, we identify [p] with [[p]] = (([p]). Thus we may consider Ur 
to be a subset of Wr. The element of Wr corresponding to [p]* shall simply 
be denoted by [[p]]*. That is, for all p, qe U, i fp  is a conjugate of q, then 
(([q]) = (([p]*) and we define [[p]]* = (([p]*). 

When this identification is made, it becomes obvious that the least upper 
bound in Ur, if  it exists, of two elements in Ur is an upper bound of these 
two elements in Wr and must, therefore, be "higher" than their least upper 
bound in Wr. More precisely, for all p, qe U 

[[p v q]]/--[[p]]O[[q]] 

Similarly, 

[[p]] |  ^ q]] 

For all p, qe U, if p is a conjugate of q, then f (p )  = f ( q ) l  and, by 
Theorem 5, we have p ~ ~qe  T. Then, directly from the definitions, for all 
p, qe U. I f p  is a conjugate of q, then p ~ ~qe  T and we have [[p]]/_ [[~q]] 
or, equivalently, [[p]]/_ [[q]]t or, since [[p]] = [[q]]*, 

[[q]]* z_ [[q]]t 

But we have already seen that since it is not necessarily the case that 
(p ~ ~q)e  T, when p and q are conjugate, then it is not necessarily the case 
that [[p]] = [[~q]] or, equivalently, that [[q]]* = [[~q]] or, also equivalently, 
that [[q]]* = [[q]]t. 
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Conclusion: Ur is a subset of Wr and it is partially ordered by the same 
partial order relation /__ in Wr, i.e., the restriction o f /_  to Ur, but insofar 
as Ur is orthocomplemented, then the operation * of orthocomplementation 
in Ur is not the restriction of the orthocomplementation * in Wr to Ur. The 
most that can be said is that for all uE Wr, u * / u  t. Similarly, if Ur is a 
lattice, then the 1.u.b. of any two elements in Ur is an upper bound of  the 
two elements as elements in Wr and their g.l.b, in Ur is a lower bound of 
them in Wr. 

4. OCCUPATION SETS 

Let 91 be the real line and let B be the o--field of Borel sets on 91. L e t f  
be a surjection from U to L, where L now is the lattice of all closed subspaces 
of a separable Hilbert space H. (The partial order relation in L is now set 
inclusion.) Let T be the theory of the set ~ of all f-valuations. Then, as we 
have seen, Ur is isomorphic to L. Define an L-valued measure on 91 to be a 
function M" B ~ L satisfying the following conditions. 

1. M ( ~ )  = o and M(91) = i. 
2. If  E, F are disjoint Borel sets, then M ( E ) Z M ( F ) .  
3. If E~, E2, E3 . . . .  is a sequence of pairwise disjoint Borel sets, then 

M( u Ei) = Z M(E,-). 

The ~ in the last condition denotes lattice sum, i.e., the operation of taking 
the least upper bound of a countable collection of elements in a o--lattice. 
L-valued measures exist: For each nonzero aeL, let No be the function from 
B to L defined by 

{ i  if 0 ~ E a n d l ~ E  
a • if 0 s E a n d  ICE 

N~,(E)= if 0~E and 1 ~E 

if OeEand l e E  

It is easy to verify that Na is an L-valued measure. It is also important to 
note that, in general, if E is a Borel set and E'  is the complement of E in 91, 
and M is an L-valued measure, then 

M(E') = M(E)  • 

By the spectral theorem, there is a natural 1-1 correspondence between 
the self-adjoint operators on H and L-valued measures. See Jauch (1968), 
for instance. 
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Definition. For every L-valued measure M and any (fixed) atom eeL, 
let C~(e) be the intersection of all the Borel sets E such that e_c M(E). Then 
Cu(e) shall be called the occupation set for M in the f-valuation te. 

If  our Hilbert space is of a finite number of dimensions, then each L- 
valued measure is represented by a self-adjoint operator (i.e., Hermitian 
matrix). If M is such an operator, then M(E) is the subspace generated by 
the eigenspaces of all the eigenvalues of (the matrix corresponding to) M 
that happened to be in E. If  e is an atom, i.e., one-dimensional subspace, 
then CM(e) is the smallest set of eigenvalues of M such that e is contained 
in the span of the corresponding eigenvectors. Thus, for example, if our 
Hilbert space is the 3-dimensional Euclidean space 913 and if M is represented 
by 

(100  
020 / 

003] 

and e is the one-dimensional subspace generated by the vector (1, 1, 1), then 
CM(e) = {1, 2, 3}. If  e is the one-dimensional subspace generated by the 
vectors (1, 1, 0), then CM(e)= {1, 2}. I f e  is the x axis, then C~(e)= {1} and 
so on. It is important to note that in general CM(e) need not be a singleton. 

Theorem 6. For each L-valued measure M and each atom eeL, 
Cu(e)r and if Cu(e)~E, for some Borel set E, then e~M(E).  

Proof. By the spectral theorem there exists a measure p on 9l (more 
accurately, on the spectrum of M)  such that we may identify the abstract 
Hilbert space Hwi th  L~(p). For every Borel set E, the closed subspace M(E) 
is the set of all r/eL2(p) which take the value 0 outside E. The atom e is 
generated by ~ L 2 ( p )  of norm 1. Let F be the set of all real numbers x for 
which ~ '(x)r  The condition e~_ M(E) holds iff F _  E. The intersection of 
all the Borel sets E such that e _  M(E) contains F. Now F is nonempty, for 
otherwise we would have e _  M ( ~ ) =  o, which contradicts the fact that e is 
an atom. �9 

The importance of occupation sets is a consequence of the following 
theorem, which relates occupation sets to assignments of truth values. We 
shall use this theorem to explain why orthocomplementation in Ur does not 
correspond to negation. 

Theorem 7. For each p e U and each atom e e L, if f (p) = M(E) for some 
L-valued measure M and some Borel set E, then te(p) = 1 iff CM(e) ~-- E. 
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Proof First suppose that te(p)= 1. Then e~_M(E). Hence CM(e)~_ E, 
by the definition of CM(e). Conversely, suppose that CM(e)~_E. Then by 
Theorem 6, e ~ M ( E ) .  Thus te(p) = 1. �9 

The concept of " t ru th"  introduced in Theorem 7 provides intuitive 
insight into the relation of a proposition pe  U to a conjugate qe U. For 
example, suppose f ( p )  = M(E).  If q is a conjugate of p, then f (q )  = M(E'). 
Hence if, for some atom eeL, CM(e) is partly in E and partly in E'  [i.e., if 
E n CM(e) v ~ ~ and E' n CM(e) ~ ~ ] ,  then both re(p) = 0 and te(q) = 0. Then 
neither CM(e)~--E nor CM(e)~--E'. Thus p and q can simultaneously have 
truth value 0. The propositions p and q cannot, however, simultaneously 
have truth value 1, because Cu(e) cannot simultaneously be a subset of E 
and of E'. 

5. RELATION TO THREE-VALUED LOGICS 

The concept of " t ruth"  introduced in the last section can be related to 
many-valued logic in the following way: For every f-valuation te we intro- 
duce a function r3e from U onto the set {0,0.5, 1} as follows: Let eeL  be 
an atom. For all p e U, suppose tha t f (p )  = M(E),  for some L-valued measure 
M and Borel set E. Then define 

!.5 if C~(e) r~ E ~  and CM(e) ~ E ' ~ J  

O3e(p) = if Cu(e)_~E 

if C~(e)~_E' 

We can think of o3e(p) as a measure of the degree of truth of p in the 
valuation te. In fact, suppose f (p )=  M(E)  as above. Then 

re(p) = 1 iff ~e(P)= 1 

This follows immediately from the definition of o3e(p) above and from the 
fact that te(p) = 1 iff CM(e) ~-- E. See Theorem 7. It follows that 

te(p) = 0 iff 03~(p) < 1 

We may say that pe  U is certainly true with respect to o3e if r3e(p) -- 1, 
i.e., if the degree of truth o fp  is 1, and tha tpe  U is certainly false if o3e(p) = 
0, i.e., if the degree of truth of p is 0. Thus, f-valuations provide coarse 
estimates of truth: te(p)--1, i.e., p has truth value 1 in the f-valuation t~ 
means that p is certainly true and te(p)= 0 says that p is not certainly true. 

Now we can, if we so wish, extend (/)e to a generalized valuation 
co~: W--, {0, 0.5, 1} in any reasonable way, i.e., so that if co~(A)=t~(A) = 1 
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or O, then fOe('~A): te('~A), but if toe(A)= te(A) and co~(B)= te(B), then 
c0~(A --, B)  = te(A ~ B).  

For example, we may agree that for all A ~ W, c0e(~A) = 1 - coe(A) and 
that COe(A--->B)=I if toe(A)_<0.5 or c0,(B)>0.5 and o~(A-- ,B)=O other- 
wise. Needless to say, there are other reasonable ways of extending o3 to a 
function from Winto {0, 0.5, 1}. 

6. PHYSICAL APPLICATION 

For the purposes of physical application we may think of U as a set 
of "simple" propositions in some field of empirical investigation. Clearly, 
empirical propositions are somewhat "fuzzy." The truth value of such a 
proposition is not always well defined. For our purposes truth value 1 sig- 
nifies certainly true and truth value 0 signifies not certainly true. 

The set W will then consist of U together with the set of all propositions 
that can be obtained from U by applying logical connectives in the usual 
way. Whether a proposition, i.e., an element of W, is certainly true or not 
will, in general, depend on time. An element of W may at one time be 
certainly true, but at other times not certainly true. Define a valuation to be 
a function t: W--, {0, 1 } satisfying the usual truth table rules of the classical 
propositional calculus (as in the definition of a valuation in Section I), with 
the understanding that t(A) = 1 means that A is certainly true and that t(A) = 
0 means that A is not certainly true. 

Not every valuation, however, is allowed by nature. If  ~ is the set of 
all allowed valuations, then T(f~), the theory of f2, is the set of all proposi- 
tions which are certainly true, i.e., take truth value 1, in all allowed valua- 
tions. Thus T(F2) is the set of "laws of nature" governing the given field of 
investigation. T(~) consists of all those assertions which are always certainly 
true. Here, "always" means "in every allowed valuation" rather than "for 
all moments of time." If, however, we agree that only one allowed valuation 
is "active" at any time, then it follows that "the laws of nature," as envisaged 
here, do not change with time. 

To be more specific, let us take U to be the set of all English statements 
of the form 

Q has a value in E 

where Q is an observable of a physical system under investigation and E is 
a Borel set on ~.  Here, we assume that the concept of an observable o f  a 
physical system is understood (an undefined concept) and that we have 
experimental procedures for determining the truth value of each statement 
of  the above form. The statement takes the value 1 if it is certainly true and 
0 if it is not certainly true. 
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In an axiomatic approach, we may consider U to be the set of all ordered 
pairs (Q, E), where Q is an observable and E a Borel set. Then it is assumed 
that there exist unambiguous experimental procedures for assigning 1 or 0, 
but not both, to each such ordered pair at any time. 

Let L be the lattice of all the closed subspaces of a separable Hilbert 
space. Let oa be the set of all L-valued measures and let F be the set of all 
observables. We make the following assumptions, axioms for our empirical 
theory: 

QI: There is a bijection h:F ~ ~9 and a surjection f :  U ~  L such that 
f(Q, E) = Q(E), where Q=h(a) .  

We note that the "first half" of this assumption corresponds to the 
well-known textbook axiom for quantum theory that the observables corre- 
spond one-one with self-adjoint operators. The "second half" of QI corre- 
sponds to J. von Neumann's famous discovery that to every "quantum 
proposition" (Q, E) there corresponds a subspace of L. 

If Q is an observable, then the corresponding L-valued measure h(Q)= 
shall also, where no confusion can arise, be denoted by Q. The next 

assumption states that nature allows only f-valuations, wherefis the function 
introduced in Q1. 

Q2: To every moment r of time (i.e., to each re01) there exists an 
atom e E L such that the truth value (with regard to being certainly 
true or not) of any p e U at time r is re(p). 

This merely says that at any time, the truth values of propositions (with 
regard to being certainly true or not) are determined by an f-valuation. One 
and only one valuation "prevails" at any time and it is an f-valuation. A 
law that, for a given physical system, determines which f-valuation prevails 
at which time can be postulated, but a study of the dynamics off-valuations 
lies beyond the scope of this paper and shall be dealt with elsewhere. 

If f~ is the set of all f-valuations and T is the theory of f~, then T, as 
has already been said, is the set of all laws of nature governing the physical 
system under investigation. What the physicist calls quantum theory is, 
strictly speaking, not T itself, but (a subset of) the metatheory of T, i.e., a 
collection of properties of T and of its poset Ur. For example, axioms QI 
and Q2 belong to the metatheory of T. Gleason's (1957) theorem is not a 
logical consequence of T, but a statement about T. It says that the only 
measures on the orthoposet of T are those of a certain kind. Similarly, the 
statement that the allowed energy levels for the hydrogen atom are such and 
such is not a logical consequence of T, but a property of T. It says that the 
spectrum of the L-valued measure corresponding, by QI, to the observable 
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energy is such and such. This is a property of T, because L is isomorphic to 
Ur and every L-valued measure is, effectively, a Ur-valued measure. 

With this distinction between T and quantum theory clearly understood, 
it nevertheless does no harm to identify T with quantum theory because, in 
a very colloquial sense, the properties of T depend on T and, hence may be 
considered to be consequences of T. Thus, quantum theory is a theory in a 
classical propositional calculus characterized by the fact that it has properties 
QI and Q2. The next paragraph describes a property of T. 

It is impossible for CQ(e) to be a singleton for  every observable Q for 
any f-valuation re: If  e is an atom, a one-dimensional subspace, then choose 
an orthonormal basis for the Hilbert space such that if ~,~e is a unit vector, 
then g is not an element of the chosen basis. Let Q be the observable 
whose Hermitian matrix is diagonal in this basis and has diagonal elements 
al, a2, a3 . . . . .  Then CQ(e) = {al, a2, a3 . . . .  }, which is not a singleton. In 
an empirical theory constructed as above, uncertainty cannot be eliminated. 

If  t~ is an f-valuation, then e is a one-dimensional space generated by a 
unit vector g. Thus the f-valuation te is effectively determined by V and 
conversely. We call ~t a state vector of the system. As in quantum theory, 
each such g determines a probability measure on L and, therefore, on Ur 
(since-Ur is isomorphic to L), i.e., a function pv,:L ~ [0, 1] such that 

p~,(|) = 1, pv,(o) = 0 

and 

i f  a l ,  a2, a3, �9 �9 �9 is a sequence of  pairwise 
orthogonal elements in L, then 

E pv(ai) = p v ( ~  ai) 

where ~ on the left denotes ordinary arithmetic sum of a series of real 
numbers and ~ on the right denotes lattice sum. If  Pa is the projection 
operator corresponding to the subspace a and gt. is a unit vector, then 
pv,(a) = (Vt, P , ~ ) ,  where ( , )  is the inner product in our Hilbert space. Every 
such probability measure determines a probability measure p~t on 9t for 
each observable M as follows: For every Borel set E, put g p~(E)= 
pv,(M(E)).  Thus eve~ T f-valuation determines a probability measure on Ur 
and determines, for each observable, a probability measure on 9t. Clearly, the 
subspace a contains the unit vector ~' iff p~,(a) = 1. Let e be the one-dimen- 
sional subspace containing ~,. It follows that, since CM(e) is the smallest 
Borel set E such that M ( E )  contains e, then M pq, (Cg(e)) = 1 .  A simple propo- 
sition which is certainly true, i.e., has truth value 1 in the f-valuation re, has 
probability 1 in that f-valuation. Put loosely, certainly true propositions 
have probability 1, as they should. 
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We note in passing that such an empirical theory need not necessarily 
be concerned with the microscopic world or even physics. An observable is 
simply any quantitative attribute of  a system, i.e., an attribute that takes 
values in 91. In economic affairs our physical system might be a market place 
in a fictitious country where, say, the Bohr is a currency unit, in honor of  
one of  the great originators of  quantum theory. (The reason why the country 
is fictitious shall soon appear.) "The price of  a commodity" is, then, an 
observable; it has values in 9t. More accurately, each commodity is an observ- 
able. The value of the commodity is its price (per unit, e.g., kilogram or 
liter). "Apple," for instance, is one observable and "milk" is another. 

The price of  a commodity at any time, however, is fuzzy. It is not a 
point in 91, but an extended set C___91, because it varies from one stall to 
another. C is the set of all available prices, of  the commodity, in the market 
at a given time. The statement 

"The price of  apples, per kilo, is between 1 and 2 Bohrs" 

is certainly true if the set C for apples is a subset of  the open interval (1, 2) 
and it is not certainly true otherwise, e.g., if C is partly in (1, 2) and partly 
outside (1, 2). 

Let U be the set of all propositions of  the form "'commodity M has a 
price in the Borel set E" and suppose that in our fictitious country the 
number of  commodities is so large that Q1 can be satisfied and is in fact 
satisfied. (Thus the number of commodities is uncountable. This is why the 
country is fictitious.) If  we also assume that "nature," or the nature of  
economic life in the country, allows only f-valuations so that also Q2 is true, 
then the laws governing the market are embodied in the theory T of  the set 
of  all f-valuations. The poset of  T is isomorphic to L, the lattice of  all the 
dosed subspaces of  a separable Hilbert space. The simple propositions (or, 
more accurately, classes of  such propositions), like quantum propositions, 
form a poset isomorphic to L. Each f-valuation determines what is certainly 
true at any time and the probability of each simple proposition. Formally, 
the theory T is indistinguishable from quantum theory. 

Continuing our study of this fictitious market place, we note that the 
partial order relation in L reflects "causal implication" in the market in the 
following sense. Let p be the proposition 

the price of  apples is between 1 and 3 Bohrs 

and q the proposition 

the price of  oranges is between 2 and 5 Bohrs 

Then (p ~ q) e T i f f  f (p )  is a subspace of  f(q) (Theorem 2). If indeed we 
have f(p)~_f(q), then we have the "causal" law that whenever the price of  
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apples is certainly between 1 and 3 Bohrs, then the price of oranges is 
certainly between 2 and 5 Bohrs. If, on the other hand, we have that 
f ( p ) l f ( q ) ,  then we have the law that if the price of apples is certainly 
between 1 and 3 Bohrs, then the price of oranges is not certainly between 2 
and 5 Bohrs (Theorem 5). 

7. WAVE-PARTICLE DUALITY 

This section is essentially conjectural: One of the main problems that 
led to the development of quantum theory and that still gives rise to contro- 
versy is that of wave-particle duality. How can a wave manifest itself as a 
set of particles? Quantum field theory (e.g., Tomonaga (1966) provides an 
adequate answer. The above approach to quantum theory seems to imply 
the elements of  a new answer. Let our Hilbert space be the space L:(p) of 
all Lebesgue-measurable, square-integrable complex functions on ~, the x 
axis. Then ~ is a function of x, e.g., a function describing the dependence 
of  the amplitude of a wave on x. 

In quantum field theory such a wave can also be regarded as (or be 
associated with) a system of  identical particles. Given any observable Q of 
such a particle, then, to put it somewhat imprecisely, ~' can be written as a 
linear combination of the eigenfunctions of Q. (This statement is an oversim- 
plification, because an observable need not have eigenfunctions.) Given such 
an observable, then the question arises: Which points of the spectrum of Q 
are, or are available to be, occupied by particles in the state V? It seems 
reasonable to assume that the answer must be CQ(e), where e is the one- 
dimensional space generated by Vz. Independently of quantum field theory, 
but within the present approach, one may therefore associate with every 
observable Q and state ~ a set XQ(~,) of particles such that CQ(e), with e 
being the one-dimensional space generated by ~,, is the set of points in the 
spectrum of Q where we may find a particle. In other words, in the state V, 
the observable Q has a value within CQ(e)for every particle in XQ(~u). This 
is merely a conjecture at present and it needs to be developed further. 

8. EPILOGUE ON THEORIES WITH 
ORTHOCOMPLEMENTATION 

As I have already pointed out, the theory T is not a theory with ortho- 
complementation. In a theory with orthocomplementation the allowed valu- 
ations are determined not in terms of a single nonzero element of L, but in 
terms of two nonorthogonal atoms. It can be shown that any number of 
nonzero nonorthogonal elements can be used. For such a theory the converse 
of  Theorem 5 is also true. As a result, occupation sets cannot be defined as 
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in this paper. It seems that theories with orthocomplementation are related 
to richer quantum systems than those considered here. An analysis of such 
theories must be relegated to a future occasion. 
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